Triple Channel Technique
Film Dosimetry

Micke A., Lewis D., Yu X.
International Specialty Products
ISP proprietary technology, patents pending
Single Channel Film Dosimetry

Calibration Curve $X=R$

$R_{ave} = R_{ave}(D) \leftrightarrow D=D(R_{ave})$

- X_{ave} average film response

Any X value delivers dose $D(X)$

- $X + \Delta X \rightarrow D(X) + \Delta D \ (X=RGB)$
- Any color disturbance ΔR leads to deviation ΔD in Dose D
 e.g. Scanner non-linearity, Film thickness variation

$D=D_X$
RGB Calibration Curves
- Dose induced color C:
 $$C(D) = \{R(D), G(D), B(D)\}$$
- Dose exposure generates only ‘certain’ colors C
 - Not all C deliver dose value
- Observed color C_{scan} is superposed with disturbance ΔC
 $$C_{scan} = C(D) + \Delta C$$
- Solution: Optimize dose D value, i.e. minimize ΔC
 $$|C_{scan} - C(D)| \rightarrow \text{min}$$
Triple Channel Film Dosimetry

Definition:
Color channels in terms of ‘optical density’ d_X
- $d_X = -\log(X)$ for $X = R, G, B$ (generally wave length)

Model:
Scanned density $d_{X,\text{scan}}$ is (simple) product
- $d_{X,\text{scan}}(D) = d_{X,D}(D) \cdot \Delta d$
- $d_{X,D}$ is calibration function
- ! disturbance Δd independent of dose + X (wave length)!
 but $\Delta d = \Delta d$(thickness, scanner, noise)

Solution:
- $\Delta d_X = d_{X,\text{scan}}(D) / d_{X,D}(D)$ for all $X = R,G,B$
- Optimized dose D:
 $\left(\Delta d_R - \Delta d_B \right)^2 + \left(\Delta d_B - \Delta d_G \right)^2 + \left(\Delta d_G - \Delta d_R \right)^2 \rightarrow \text{min}$
Triple Channel Film Dosimetry Example

Dose map and disturbance (uniformity) Δd map and Horizontal profile
Triple Channel Correction
What happen to the Marker Dye?

.Marker Dye needed at ‘lower’ dosage:
 \[\Delta d \approx \frac{d_{B,\text{scan}}(0)}{d_{B,D}(0)} \]
 otherwise ‘scanner noise’ dominates \(\Delta d \)

.At ‘higher’ dosage Red channel is saturating and has function like Marker Dye
Triple Channel Film Dosimetry Features and Advantages

- Separate Dose and Dose-independent effects
 - Allows compensation for film thickness variation
 - Allows ‘smart’ noise reduction (not yet implemented)

- Enable the use of full film dose sensitivity of all channels RGB without “transition error”

- Significant improvement of dose map accuracy

- Allows to ‘sense’ calibration errors